Training course: GIS Data Preparation and Management
GIS Data Preparation and Management

Presentation outline:

- Data quality – the critical element in GIS
- Data acquisition and inspection
- Good data management practice:
 - Data storage, documentation, preparation and cleaning, dissemination, archival
- Choosing spatial data format
The Power of Data – the critical element in GIS

The combination of GIS software with modern computing capabilities holds enormous potential for analysing and understanding the world around us...

BUT it all depends on the data!

Remember... ‘G.I.G.O.’ – “Garbage in, garbage out!”

- ‘Dirty Data’ – significant volumes of data are discarded on initial inspection, because they are in some way incomplete or inconsistent
 - Globally, on average, companies estimate 26% of their data to be ‘dirty’
 - Human error is considered as the dominant cause in over 60% of cases
 - Key factors include poor internal communications and protocols, lack of training, inexperience with data collection

Source: Experian Data Quality research
Datasets may exist... **BUT** are they suitable for use?

Information may be:

- Out of date
- Incomplete
- Spatially incorrect
- Factually incorrect
- Generated at a scale that is not appropriate to your study

It is important to recognise that a GIS is not a “miracle machine.” You should **critically assess any data** that is being considered for use.
Acquiring GIS data: inspect, transform, integrate

Primary data (e.g. survey)

Tabular data (Database tables, CSVs etc.)

Non-digital data (paper maps)

Inspection
Transformation
Integration

Consistent, standardised GIS data for analysis and visualisation
Data quality: prepare and ‘clean’ input data

Before undertaking any spatial analysis, it is critical to make sure that your data is “clean”

Clean means:

- Data is fully attributed
- Attributes are consistent
- No obvious spatial referencing errors
- Metadata exists, recording all known relevant information on the data

<table>
<thead>
<tr>
<th>wardname</th>
<th>wardcode</th>
<th>Ignaname</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tsamiya Babba</td>
<td>KN1708</td>
<td>NULL</td>
</tr>
<tr>
<td>NULL</td>
<td>KN1708</td>
<td>NULL</td>
</tr>
<tr>
<td>Naibawa</td>
<td>KN2510</td>
<td>NULL</td>
</tr>
<tr>
<td>Zogarawa</td>
<td>NULL</td>
<td>Dawakin Kudu</td>
</tr>
<tr>
<td>Yaraya</td>
<td>KN0914</td>
<td>Dawakin Kudu</td>
</tr>
</tbody>
</table>

- 30/04/171
- 30/4/1971
- 30thApril71
- 30:4:71
- ?th April 17
- Apr-71-30

Missing values or misspelt words

Inconsistent values make data queries impossible

Point locations noticeably outside study area

Poor metadata causes misunderstanding
Good practice in GIS data management

Why establish **standard procedures** within your teams to regulate data acquisition, QA, documentation, storage and archival?

- Increase awareness and use of relevant datasets
- A method of catching and eliminating data errors, as early as possible
- Establish an audit trail of how and when data are used in a project
- It is the **key to working effectively** in GIS, across teams and wider partners

"Data is a precious thing and will last longer than the systems themselves"

Tim Berners-Lee

"Data that sit unused are no different from data that were never collected in the first place"

Doug Fisher
The GRID3 GIS data cycle

Standardise your data management procedures

- Acquire data
 - Save data
 - Save a copy of original data
 - Consider folder structure **
- Metadata
 - Start or update metadata record
- QA data
 - Clean or reformat data, as necessary
- Update Metadata
- 'Save as..' intermediate data file
- 'Save as..' final data file
- Geoprocessing and analysis
- QA results
- Update Metadata
- Data mapping and visualisation
- Archive project and data **

- File and folder management
- Data documentation
- Working on the data

- Individuals and teams should follow **consistent procedures at each stage** of the cycle
- Management should guidance, documentation and training to all data users
- **Think about the long-term when creating folder structures and archiving projects – to ensure these resources are visible and accessible to colleagues and future users**
Good practice: Saving and storing your data

GIS project folder structure:

- Not one-size-fits-all! Customise the structure according to your team/Project requirements
- Once the structure and approach is agreed, it should be adopted and maintained by all team members
- Always consider the long-term when planning folder structures and data protocols – ensure visibility, access and reuse of the data over time

Example of a typical folder structure (used in GRID3 projects)
Good practice: Saving and storing your data

GIS file naming considerations:

- Avoid spaces, periods, hyphens, parentheses, brackets and other special characters, e.g. $, %, @, etc.
- Use acronyms sparingly
- Avoid using reserved database keywords*
- Filenames should be **concise** and **informative**
- If separating words, use underscore (one_two), or 'camelCase'

GRID3 file naming conventions

Database reserved keywords

* If using the following spatial databases, you should avoid particular words in your filenames which relate to specific functions in the database: [GeoPackage (SQLite Database)](https://geopackage.org) | [ESRI Geodatabase](https://desktop.arcgis.com/en/arcmap/latest/newproject/provide-naming-guidelines.html)

Note: the restriction also applies to the naming of column headers!
Good practice: Documenting your data (Metadata)

What is the value of metadata?

▪ Vital information about data and how they were collected
 ▪ Method for reporting known limitations of data, i.e.
 ▪ Data currency (when data was generated)
 ▪ Accuracy
 ▪ Completeness
 ▪ Error

▪ Data provenance
 ▪ Provides an audit trail of collection, reformatting & analysis processes applied to the data

Metadata provides a basis for sound decision making!

An example metadata record

Date created	7 February 2024
Date updated	7 March 2024
Created by	Ms A. Learner, Junior data scientist, GRID3
Details	Health facility data for 8 LGAs in Kano state, Nigeria. Data collected between 6 January and 10 March 2024.
Edits made	Health facility categories updated 2.1
Version	2.1
Data source	Collected by LGA survey teams during 2024 measles campaign
CRS	WGS 1984 UTM Zone 30
Terms of use	For open external use
Known errors	Data expected from 10 LGAs; received only 8 GPS and ODK forms were used during data collection. Metadata tab created by A.Learner on 31 March 2024
Additional notes	
Good practice: Data cleaning for GIS

Non-spatial data can be ‘cleaned’ using a range of software applications

- An example of a common problem – source data organised by column (often exported from a content management system)
- GIS import requires items to be organised by row
- Data must be transposed (in Excel or equivalent)
Good practice: Data cleaning for GIS

Considerations for cleaning non-spatial data:

- The following are not supported in GIS: merged cells, titles, captions
- Field headers should contain no more than 10 characters and no unusual characters (e.g. &, %, £, etc.)
- Investigate duplicated or missing rows
- Remove blank or redundant rows/columns
- Cell values:
 - What is the intended data type of each column? Text? Numeric? Integer? Date?
 - Are the cell characters consistent with the data type?
 - 1000 or 1000?
 - 13th Feb 24 or 13/02/2024?
- Remove trailing- and double-spaces
- Consistent capitalisation?
Good practice: Data cleaning for GIS

Considerations for cleaning spatial data:

- Coordinate system/map projection – is your GIS project set to the same coordinate system as used by the data capture device?
- Do your point locations fall within expected administrative boundaries, or settlement extents?
- Missing attributes? Can you use the location of a feature to fill in missing information?
- Search for duplicate locations using geoprocessing tools
Choosing spatial data format

What are most commonly used formats?

geopackage.org
esri.com
Choosing spatial data format: Shapefile (SHP)

Advantages:

- Universally recognised
- Simple structure, easily shared, good for newcomers

Disadvantages:

- Doesn’t handle large data volumes very well – 2GB limit!
- Cumbersome file management:
 - It’s not a single file, but a collection of components files
 - Metadata must be stored in a separate file (.txt, .xls, etc.)
- One shapefile holds just one geometry type – point, line or polygon
- Limited for international/multilingual data (i.e. non-ASCII character sets)
Choosing spatial data format: **GeoPackage (GPKG)**

Advantages:
- Everything is contained in a **single file**, containing multiple spatial datasets
- Suitable for large-scale projects and can hold **massive data volumes**
 - Efficient and quick loading, rendering, planning and zooming
- GeoPackage **supports raster and vector** data seamlessly, plus tile data
- GeoPackage provides **full metadata integration**
- Broad compatibility (ArcGIS, GDAL, QGIS, R, Python)
- **Handles international and multilingual data** (Unicode character encoding)

Disadvantages:
- More involved, a steeper learning curve for new users
- Potential compatibility issues with old software

The structure of a GeoPackage; Single file containing multiple spatial datasets
Choosing spatial data format: **File Geodatabase (FGDB)**

Note: ESRI File Geodatabase was developed for use in ArcGIS software applications

Considerations for the QGIS user:

- If you are working solely in QGIS, you should adopt GeoPackage
- However, some teams contain both QGIS users and ArcGIS users!
- Recent QGIS installations come with the `openfilegdb` driver, enabling a level of access and use of FGDB; **note the following:**

YOU CAN:

- Read and write to an **existing FGDB**
- Export data from QGIS and create a **new FGDB** to hold the data

YOU CANNOT:

- Export your data as a new layer into an existing GDB!
GIS Data Preparation and Management

Wrap up and summary:

- Data is central to working effectively in GIS
- **Investigate** data thoroughly and **critically assess** its suitability and limitations for a given project
- Implement or follow **agreed protocols** within your teams, at all stages of the data cycle
- Consider alternative spatial data formats
- Think about the **long-term** in your data management strategy!
GIS Data Preparation and Management

Now post your questions and comments in the course discussion forum!